If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121z^2-25=0
a = 121; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·121·(-25)
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-110}{2*121}=\frac{-110}{242} =-5/11 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+110}{2*121}=\frac{110}{242} =5/11 $
| 4y+9=7y+21 | | 4x=66-10 | | (4D4−8D3−7D2+11D+6)y=0 | | 5x+21=x+1/x+1 | | 21x+28=36x+36 | | (y)=2y+7 | | 15×90=n | | (y-9)(y-7)(y+3)(y+1)-348=0 | | 4t-28=12 | | 3x-2+5x+28=90 | | X-(x*10÷100)+5000=x+(x*10÷100) | | n/7=12/24 | | X-(10x/100)+5000=x+(10x/100) | | 0.8*x-18=24 | | 0.8*3-x=24 | | F(x)=x²-4x+10 | | (a-4)=(2a+3) | | (26/x+2)-26/x=1/12 | | 24=(x+8)(2.25-8/x) | | 7x+160=300 | | 1/2/x=-8/15 | | H(x)=x^2+9x+20 | | 20=21x30 | | P-3q=-5 | | x100=40 | | 8^2+4y+9=29 | | 17-5x=2-2x | | (8-5=)/(7-8j) | | 2×+5y=0 | | 2.7=1.1x | | 1/2g-4=2g-1/2g=4 | | 14-6(a+2)=7+a |